Exercise 54

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.

$$
f(x)=x^{2}-6 x-1
$$

Solution

In order to more easily graph the quadratic function, write it in vertex form by completing the square. The following algebraic identity is necessary.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-6$, which means $B=-3$ and $B^{2}=9$. Add and subtract 9 from the right side and use the identity.

$$
\begin{aligned}
f(x) & =\left(x^{2}-6 x+9\right)-1-9 \\
& =(x+(-3))^{2}-10 \\
& =(x-3)^{2}-10
\end{aligned}
$$

Therefore, the vertex is $(3,-10)$, and the axis of symmetry is $x=3$. To determine the y-intercept, set $x=0$.

$$
f(0)=(0-3)^{2}-10=(9)-10=-1
$$

Therefore, the y-intercept is $(0,-1)$. To get the x-intercept, set $y=0$ and solve the equation for x.

$$
\begin{gathered}
0=(x-3)^{2}-10 \\
10=(x-3)^{2}
\end{gathered}
$$

Take the square root of both sides.

$$
\sqrt{10}=\sqrt{(x-3)^{2}}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-3$.

$$
|x-3|=\sqrt{10}
$$

Remove the absolute value sign by placing \pm on the opposite side.

$$
x-3= \pm \sqrt{10}
$$

Add 3 to both sides.

$$
x=3 \pm \sqrt{10}
$$

This means $x=\{3-\sqrt{10}, 3+\sqrt{10}\}$, and the x-intercepts are $(3-\sqrt{10}, 0)$ and $(3+\sqrt{10}, 0)$.

A graph of the function is shown below.

